Активный высокоомный щуп для осциллографа своими руками. Активный щуп для осциллографа

Активный высокоомный щуп для осциллографа своими руками. Активный щуп для осциллографа

Большинство осциллографов имеют входное сопротивление 1 Мом и емкость 20 пф. С применением делителя 1Х10 сопротивление увеличивается до 10 Мом и емкость падает до нескольких пикофарад. Однако даже такие параметры могут изменить параметры измеряемой цепи выдавая недостоверные показания. Задача данного щупа внести минимальную погрешность в измеряемую цепь. Для этого сопротивление пробника должно стремиться к бесконечности, а емкость к нулю. Чтобы получить такие параметры требуется прецизионный операционный усилитель и конструктивные ухищрения, в частности игла пробника не касается платы и проходя через фторопластовую бобышку припаивается непосредственно к ножки микросхемы. В качестве операционного усилителя выбран широко распространенный CA3140. Вот интересующие нас параметры из даташита :

Поскольку проконтролировать такие высокие параметры у меня нет возможности то воспользуюсь слегка пониженными данными даташита. Тогда параметры изделия будут таковыми:

  • Входное сопротивление - 1 Том
  • Входная емкость - 5 пФ
  • Усиление - 1:10 и 1:1
  • Максимальное входное напряжение 12 вольт
  • Максимальное выходное напряжение - 8 вольт
  • Максимальная рабочая частота - 1 МГц

Схема проста как валенок, поэтому на ней не указаны блокировочные конденсаторы по питанию и синфазный дроссель на проводе питания. Подстроечные резисторы регулируют смещение по постоянному току и усиление в режиме 1:10.

Вот так выглядит готовая конструкция, на ней не допаян земляной провод с крокодилом на конце.

Хорошим источником фторопластовых бобышек служат разъемы SMA, в данной конструкции он впаян целиком. Важным этапом является промывание платы спиртом, без этого можно забыть о сверхвысоких сопротивлениях, а иногда и вовсе получить неработоспособный прибор.

Добрый день Вам. А нельзя ли воочию увидеть Вашу схемку дифференциального щупа?
Искал активный щуп, думаю попробовать им обмануть свой древний осцилограф ЛО-70, в нём нет открытого входа, наткнулся на Вашу разработку, думаю если "покажется" схемка, сейчас она выглядит в виде "закрытой" картинки, то изготовлю, в жизни пригодится.
С ув. Дмитрий.

Доступ открыл к картинке.

Только только обмануть ЛО-70 вам таким способом не удастся: там между каскадами постоянное напряжение отсекают конденсаторами. Надо всю схему вертикальной развертки менять.

Этот щуп нужен для тестирования блоков питания и электроприводов, когда надо смотреть напряжение в двух гальванически развязанных схемах сразу.

Как в реальности выглядит.

Диф. каскад вставляемый в осциллограф.

Схему вертикальной развертки осциллографа по моей схеме не сделать, так как там выход нужен +-100В. Микросхему ОУ на напряжение питания 200В сложно найти.

В интернете есть готовая схема модернизации.

Ей даже внешний источник напряжения не нужен, достаточно выпрямителя с сглаживающими конденсаторами на обмотку накаливания ламп добавить, что бы получить +-6.3В.

http://www.irls.narod.ru/izm/osc/oscpr01.htm

Спасибо Вам что отвечаете!
Я не так силен в схемотехнике осцилографов, хотя приходил к мысли используя трубку ЛО247 этого осцилографа, переделать под транзисторную схему, но в данный момент этот осцилограф мне нужен на работе, у нас несколько сварочных полуавтоматов типа ВДУ 506 и 1201 и там без осцилографа никак. В скором времени думаю запаять плату радиоконструктора-осцилографа DSO-138, при его успешном запуске возможно возьмусь за реконструкцию ЛО-70, но с элементной базой совсем туго, некоторые радиодетали используемые в схемах переделки попросту не приобрести у нас.
Вы все же применили Аналог Девайс, почему не оставили 318 ? и нужна ли кориектировка схемы под данную МС?
Еще раз спасибо Вам.

Edited at 2016-08-14 17:28 (UTC)

Я же написал, что она быстрее, только стоит очень дорого. Для корректирования надо только убрать конденсаторы по 10пФ, все остальное остается так же. По ногам они совпадают.

На lm318 я для работы делал, она тоже работает.

Для DSO-138 я не вижу смысла в использовании такого щупа, так как у него только один вход.

Тогда прошу прошения - возможно я недопонял, диф.щуп ведь подключается к однолучевому осцилогафу или к двухлучевому? По схеме мне кажется в вывода 6 МС LM318 идет выход подпертый на массу резистором 2к4, возможно надо делать два устройства. Извините.
С ув. Дмитр.

Диф. щуп можно к любому осциллографу подключать, он отличается от обычного только высоким сопротивлением "заземленного" вывода, который обычно с крокодилом.

Суть такая, если использовать два обычных щупа и крокодилы обоих щупов зацепить к точкам с разным напряжением, то то сквозь эти крокодилы пойдет большой ток, так как внутри осциллографа они объединены вместе.

Что бы этого не произошло, надо один из щупов заменить на дифференциальный, у которого оба вывода обладают высоким сопротивлением.

Еще он может пригодиться если осциллограф заземлен и от заземления избавиться невозможно, то тогда, в случае тестирования другой заземленной установки, даже с одним щупом может ток через "крокодил" пойти. Но это уже экзотика, так как от заземления можно легко куском изоленты избавиться.

Твой dso от батарейки и имеет один вход, поэтому использовать диф. щуп смысла нет в любом случае.


Как изготовить кабель-щуп для низкочастотного виртуального осциллографа?

О том, как изготовить простой низкочастотный кабель-щуп для осциллографа. https://сайт/

Подобный кабель целесообразно изготовить, даже имея набор профессиональных кабелей. Благодаря тонкому, гибкому проводу и небольшим габаритам, он может стать хорошей альтернативой громоздким и неудобным промышленным кабелям. Конечно, область применения ограничивается ремонтом аудиотехники, но если использовать виртуальный осциллограф на основе аудиокарты, то более серьёзный кабель может никогда и не понадобится.


Самые интересные ролики на Youtube

Близкие темы.

Конструкция и детали.

В качестве корпуса для щупа подойдёт оболочка от фломастера или маркера. Экранированный провод тоже сгодится любой, хотя лучше выбрать более эластичный.

На чертеже изображён щуп в разрезе. https://сайт/

  1. Остриё – цыганская игла.
  2. Защитная трубка – кембрик.
  3. Втулка – сталь или латунь.
  4. Стопорный винт – М3, сталь.
  5. Корпус – оболочка маркера.
  6. Кабель – провод экранированный.
  7. Отверстие в корпусе – Ø3мм.
  8. Втулка – М3, латунь.
  9. Общий провод.
  10. Скоба – узел крепления общего провода, латунь.
  11. Шайба – М3, сталь.
  12. Зажим – латунь.
  13. Стопорный винт – М3, сталь.
  14. Отверстие в заглушке – Ø3мм.
  15. Заглушка – оболочка маркера.
  16. Защитная трубка – кембрик.

Втулка поз.3 вклеена в отверстие оболочки маркера. Диаметр отверстие во втулке поз.3 чуть больше диаметра иглы.

Стопорный винт поз.4 фиксирует иглу во втулке поз.3.

Экранирующая оплётка кабеля припаяна к втулке поз.12, а центральный провод к игле поз.1.

Стопорный винт поз.13 фиксирует кабель во втулке поз.12.

Втулка поз.8 вкручивается в зажим поз.12, предварительно пройдя через отверстия поз.7, поз.14 и отверстие в шайбе поз.11. Таким образом, втулка поз.8 обеспечивает соединение всех элементов конструкции.


На этой картинке можно увидеть, как выглядят внутренности щупа в реальности.

Вот, что получилось.

Активный Щуп

См. подробную статью в ВРЛ №95 стр. 12

Активные щупы с малой входной ёмкостью. И. Шиянов.

________________________________________________________________________

http://nowradio. *****/pribory%20dly%20nastroyki%20KV-UKV%20apparatury. htm

http://*****/forum/download/file. php? id=16793

Налаживание радиоприемных устройств часто требует проверки гетеродинов измерения параметров генерируемою им ВЧ-напряжения. К сожалению, сделать это непосредственно с помощью ВЧ - осциллографа или милливольтметра бывает затруднительно. Очень большое влияние из работу микромощного генератора (гетеродина) оказывает входная емкость прибора, входное сопротивление. Например, вход популярного осциллографа С1-65 емкостью 30 pF и сопротивлением 1М может не только исказить результаты измерения, но даже сорвать генерацию гетеродина. А тут еще и коаксиальный кабель с волновым сопротивлением 50 Ом. Конечно, можно подключить вход через конденсатор 1 pF, но это может очень сильно исказить результат измерения (уровень ВЧ-напряжения достигший входа измерительного прибора может быть и 100 раз и более заниженным). Лучше всего пользоваться активным щупом, представляющим собой истоковый повторитель на высокочастотном полевом транзисторе имеющим входную емкость менее 1 pF, и входном сопротивлением более 10 МОм при выходном сопротивлении 50 Ом. Такой щуп, выполненный в виде отдельной экранированной коробки можно расположить в непосредственной близости от точки измерения, соединить с ней кратчайшими проводниками, полностью исключив влияние волнового сопротивления кабеля емкости прибора и кабеля входного сопротивления прибора на результат измерения. Более того, сам измерительный прибор может быть расположен на значительном расстоянии от точки измерения (можно использовать очень длинный соединительный кабель).

Принципиальная схема активного щупа на полевом транзисторе BF998 показана на рисунке. На схеме транзистор показан в корпусе так чтобы была понята его цоколёвка. Входная емкость щупа примерно 0,7 pF она образована тремя последовательно включенными конденсаторами С1-С3. Входное сопротивление 10 мегаом. Измеряемое ВЧ напряжение поступает на первый затвор транзистора. Напряжение смещения на этом затворе равно половине напряжения питания и создано резистивным делителем R2-R3. На затвор напряжение смещение подается через резистор R1 сопротивлением 10 Мом. Входная емкость транзистора BF998 равна 2,1 pF, поэтому напряжение, полученное в результате измерения нужно умножать на 3. Нагрузкой является резистор R4 его сопротивление должно быть таким как волновое сопротивление кабеля. Щуп работает в частотном диапазоне от 100 kHz до 1 GHz с неравномерностью коэффициента передачи по напряжению не более 7 5dB. На частотах более 1 GHz погрешность значительно возрастает. Источником питания служит сетевой адаптер от телеигровой приставки типа «Денди» (выходное постоянное нестабильное напряжение 8-11V) Напряжение стабилизируется на уровне 5V интегральным стабилизатором А1. Диод VD1 служит для защиты от ошибочного неправильного подключения источника. Питать щуп можно и от лабораторного источника напряжением 8…20V. Конструктивно щуп выполнен в экранированном корпусе неисправного всеволнового тюнера телевизора «LG» Монтаж печатно-объемным используя демонтированную плату данного тюнера. Монтаж первого затвора полевого транзистора на R1 и конденсаторы С1-С3 нужно сделать «на воздухе», чтобы исключить влияние емкости печатной платы и экранированного корпуса на входную цепь. Вход - два монтажных провода длиной не более 10 см. Провод, соединенный с С1 не должен соприкасаться изоляцией с платой или экраном корпуса.

Для питания 5V лучше использовать BF 1005 или BF 1012 S есть в Платане.

Радиоконструктор №12 2007г

Активный Щуп Осциллографа

Журнал "Радио", номер 6, 1999г.

http://www. *****/literature/radio/199906/p28_29.html

Широкополосные усилители с высоким входным сопротивлением, малой входной емкостью и низким выходным сопротивлением используются в различных устройствах. Одно из применений - входные щупы для осциллографов и другой измерительной аппаратуры. Как показано в этой статье, современные ОУ фирмы Analog Device позволяют решить эту задачу простыми средствами.

Осциллограф является одним из наиболее универсальных приборов, позволяющих измерять самые различные параметры электрического сигнала, а зачастую и значительно упрощать процедуру настройки электронных устройств. В некоторых случаях он просто незаменим. Однако многим знакома ситуация, когда подключение осциллографа к настраиваемому устройству приводит к нарушению его режимов. Виной тому в первую очередь служат вносимые в исследуемую цепь емкость и сопротивление входа осциллографа и его соединительного кабеля.

Большинство осциллографов, используемых радиолюбителями, имеют высокое входное сопротивление (1 МОм) и входную емкость 5...20 пФ. В сочетании с соединительным экранированным входным кабелем длиной около метра суммарная емкость возрастает до 100 пФ и более. Для устройств, работающих на частотах выше 100 кГц, такая емкость может оказать существенное влияние на результаты измерений.

Для устранения этого недостатка радиолюбители пользуются неэкранированным проводом (если уровень сигнала достаточно большой) или специальным активным щупом, в состав которого входит усилитель с высоким входным сопротивлением, выполненный, как правило, на полевых транзисторах . Применение такого щупа значительно снижает величину вносимой в устройство емкости. Однако недостатками некоторых из них являются низкий коэффициент передачи или наличие на выходе сдвига уровня, затрудняющего измерение постоянного напряжения. Кроме того, они имеют узкий диапазон рабочих частот (до 5 МГц), что также ограничивает их применение и требует коротких соединительных кабелей. Несколько лучшие параметры имеет щуп, описанный в . Следует отметить, что все эти щупы могут эффективно работать и с осциллографами, имеющими высокое входное сопротивление.

В настоящее время все большее распространение получают широкополосные осциллографы с диапазоном рабочих частот до 100 МГц и выше, имеющие низкое входное сопротивление - 50 Ом, поэтому их подключение к настраиваемому устройству зачастую становится практически невозможным. Не все из них комплектуются активными щупами, а применение резистивных делителей приводит к заметному снижению чувствительности.

Активный щуп, описание которого предлагается вниманию читателей, свободен от указанных недостатков. Он работает с различными осциллографами, входное сопротивление которых может быть низкоомным - 50 Ом или высокоомным - до 1 МОм, имеет диапазон рабочих частот 0...80 МГц и достаточно высокое входное сопротивление на низких частотах - 100 кОм. Его коэффициент передачи - 1 или 10, т. е. он не только не ослабляет, но и усиливает сигнал. К достоинствам щупа можно отнести и его небольшие габариты.

Таких параметров удалось достигнуть за счет применения современного быстродействующего ОУ фирмы Analog Devices. В частности, в данном щупе использован ОУ AD812AN (Чип – Дип – 180р Платан – 190р), который имеет следующие основные характеристики:

Верхняя рабочая частота - не менее 100 МГц; входное сопротивление - 15 МОм при входной емкости 1,7 пФ; входное напряжение - до + 13,5 В, а скорость нарастания выходного напряжения - 1600 В/мкс; выходной ток (при выходном сопротивлении 15 Ом) - до 50 мА; потребляемый ток в отсутствии входного сигнала - 6 мА.

Кроме того, ОУ имеет низкий уровень гармоник (-90 дБ на частоте 1 МГц и нагрузке 1 кОм) и малый уровень шума (3,5 нВ/^Гц), защиту от К3 (ток ограничен до 100 мА), рассеиваемая небольшим корпусом мощность достаточно велика - 1 Вт. К этому следует добавить, что цена микросхемы, содержащей два ОУ с такими параметрами, относительно невысока ($3...4).

Схема активного щупа приведена на рис. 1. В основном она соответствует стандартной схеме включения ОУ. Коэффициент передачи КU изменяется переключением SA1 элементов цепи обратной связи и имеет два значения: 1 и 10. Переключателем SA2 выбирают режим работы: с "закрытым" входом, когда на входе включен конденсатор С1 и постоянная составляющая напряжения на вход не проходит, или с "открытым" входом, когда она проходит.

Зарядные устройства" href="/text/category/zaryadnie_ustrojstva/" rel="bookmark">блок питания с выходным напряжением %12...15 В. Надо заметить, что потребляемый ток при отсутствии сигнала составляет 10...15 мА, при работе на низкоомную нагрузку при подаче сигнала ток может возрастать до 100 мА.

Литература

1. Гришин А. Активный щуп для осциллографа. - Радио, 1988, # 12, с. 45.

2. Иванов Б. Осциллограф - ваш помощник (активный щуп). - Радио, 1989, # 11, с. 80.

3. Турчинский Д. Активный щуп к осциллографу. - Радио, 1998, # 6, с 38.

Осциллографический ВЧ пробник с Свх = 0.5 пф

http://www. *****/ot07_19.htm

При осциллографических измерениях в высокочастотных устройствах входная емкость делителя может вносить значительные искажения в настраиваемый узел (например, при подключении пробника к контуру ВЧ генератора и т. п.). Делители с коэффициентом 1:1 имеют входную емкость порядка 100 пф и более (емкость кабеля плюс входная емкость осциллографа), что существенно ограничивает их частотный диапазон. В то же время стандартные пассивные делители 1:10 с входной емкостью 12 – 17 пф снижают чувствительность осциллографа до 50 мВ на деление (при максимальной чувствительности по входу равной 5 мВ / деление, типичной для большинства промышленных осциллографов), а также имеют все еще слишком большую входную емкость для проведения неискажающих измерений в ВЧ цепях, где емкости контуров могут иметь такое же значение.

Данная проблема решается использованием для измерений специальных активных пробников, выпускаемых для этой цели (например, фирмой Tektronix). Однако, эти устройства довольно трудно найти и их цена (от $150 и выше) сопоставима с ценой хорошего б/у осциллографа. В то же время не представляет большой сложности самостоятельно изготовить простой активный осциллографический пробник с малой входной емкостью, что и было сделано автором.

Активный осциллографический пробник предназначен для измерений переменных напряжений в низковольтных ВЧ схемах и имеет следующие характеристики:

    Диапазон измеряемых амплитудных значений сигнала – от 10 мВ до 10 В Частотная характеристика – линейна от 10 КГц до 100 МГц при малом сигнале Выходной сигнал – инвертированный, с коэффициентом деления 1:2 Напряжение питания – 12 вольт (4 * CR2025) или внешний источник Входная емкость – 0.5 пф (0.25 пф с внешним делителем 1: 10) Входное сопротивление – 100 килоом Потребляемый ток – 10 мА Размеры 60 х 33 х 16 мм

Внешний вид изготовленного прибора приведен на фото.

Конструкция прибора

Принципиальная схема пробника приведена на рисунке. Прибор собран на трех малошумящих СВЧ транзисторах 2SC3356 с граничной частотой 7 ГГц. Коэффициент усиления по напряжению составляет около 23 дб. Выходной эмиттерный повторитель служит для дополнительной развязки усилителя от нагрузки и может быть исключен, если пробник будет использоваться с одним и тем же осциллографом. Цепочка из светодиода, стабилитрона на 9 вольт и резистора служит индикатором включения и пороговым индикатором напряжения батареи питания. Питающее напряжение 12 вольт необходимо и достаточно для того, чтобы получать на выходе прибора максимальное амплитудное значение измеряемого сигнала до 5 вольт, и тем самым обеспечивать максимальный динамический диапазон до 50 дб при проведении измерений с установкой коэффициента отклонения, начиная от 5 мВ на деление (чувствительность большинства осциллографов).

https://pandia.ru/text/79/067/images/image004_5.jpg" width="750" height="373 src=">


Налаживание

Этот этап работы должен быть проведен весьма тщательно для получения нужного результата.

После сборки усилителя необходимо прежде всего точно установить его рабочую точку подбором резистора на 120 килоом для получения максимальной амплитуды неискаженного сигнала на выходе. В данной схеме и при свежих элементах питания этот режим достигается при установке постоянного напряжения от +5.2 до +5.3 вольта на эмиттере второго транзистора. Рабочая точка второго эмиттерного повторителя не требует настройки при указанных номиналах резисторов. Далее следует точно подобрать значение нижнего по схеме резистора (в данном случае 20 килоом) входного делителя для получения требуемого маштаба (1: 2) передачи сигнала между входом и выходом прибора на относительно низкой частоте (порядка 100 КГц). Заметим, что входное сопротивление усилителя при указанных номиналах деталей составляет около 5 килоом (на той же частоте), так что при отсутствии указанного резистора коэффициент передачи устройства будет выше требуемого примерно на 3 дб (величина ослабления входного сигнала равняется (105 / 5) = 26 дб, в то время как общий коэффициент усиления схемы равен 23 дб, а требуемый коэффициент передачи всего устройства должен быть равен 0.5, т. е. минус 6 дб). Подбор компенсирущих емкостей (0.5 пф параллельно резистору на 100 килоом, и подстроечный конденсатор в нижней ветви входного делителя) осуществляется путем сравнения коэффициента передачи на двух частотах, например, 1 МГц и 30 МГц, и подбора емкостей до получения нужного постоянного коэффициента передачи устройства. Далее производится окончательная проверка устройства на верхней рабочей частоте, если у радиолюбителя имеется такая возможность. В заключение проверяется фактическая входная емкость пробника на высокой частоте (например, подключением его к контуру с известными параметрами работающего генератора и контролем изменения частоты выходного сигнала по цифровому частотомеру или приемнику). При правильном выполнении конструкции прибора она не должна существенно отличаться от указанного на схеме значения (суммарная входная емкость в изготовленном автором пробнике, измеренная на частоте 20 МГц, составила 0.505 пф).

Замечания

Данный пробник создавался автором для измерений в цепях синусоидальных ВЧ сигналов в контурах генераторов и усилительных каскадов транзисторных схем, и он в целом решает поставленную задачу. Именно по этой причине в пробнике и был выбрано указанное выше соотношение между всеми основными параметрами прибора – его частотным диапазоном, высокой чувствительностью, достаточно большим входным сопротивлением и минимально возможной входной емкостью измерителя, а также небольшим потребляемым током. Радиотехника – это всегда компромисс при заданных разработчиком предельных значениях параметров.

Активный щуп для С1-94.

http://*****/izmeren/369-tri-pristavki-k-s1-94.html

Алюминий" href="/text/category/alyuminij/" rel="bookmark">алюминиевый стаканчик из-под валидола. С осциллографом щуп соединяют любым высокочастотным экранированным кабелем, желательно небольшого диаметра.

При налаживании щупа сначала подбирают (если это понадобится) резистор R1, чтобы обеспечить указанный на схеме режим работы транзистора VT2. Коэффициент передачи устанавливают подбором резистора R4, а верхнюю границу полосы пропускания - подбором конденсатора С4. Нижняя граница полосы пропускания зависит от емкости конденсатора С1.

Желательно проверить амплитудно-частотную характеристику щупа. Если на ней будет обнаружен подъем иа частотах, соответствующих верхней границе полосы пропускания, придется включить последовательно с конденсатором С4 резистор сопротивлением 30Ом

Взято отсюда: http://www. *****/lcmeter3.htm

Частотометр, измеритель ёмкости и индуктивности – FCL-meter

На транзисторе VT1 собран усилитель сигнала частотометра F1. Схема особенностей не имеет за исключением резистора R8 (100 Ом), необходимого для питания выносного усилителя с малой входной ёмкостью, во многом расширяющего область применения прибора. Его схема показана на рис. 2 .

При пользовании прибором без внешнего усилителя необходимо помнить, что его вход находится под напряжением 5 Вольт, и поэтому необходим развязывающий конденсатор в сигнальной цепи.

Предделитель частотометра F2 собран по типовой для большинства подобных прескалеров схеме, лишь введены ограничительные диоды VD3, VD4. Необходимо заметить, что при отсутствии сигнала предделитель самовозбуждается на частотах около 800-850 МГц, что является типичным для высокочастотных делителей. Самовозбуждение пропадает с подачей на вход сигнала от источника с входным сопротивлением близким к 50 Ом. Сигнал с усилителя и прескалера поступает на DD2.

Выносной щуп к осциллографу.

http://forum. /index. php? showtopic=13268&st=440

На рис. 3 представлена принципиальная схема повто­рителя напряжения, выполненного в виде электронного щупа к осциллографу. Схема повторителя содержит че­тыре транзистора. Согласованная пара полевых тран­зисторов VT1, VT2 с n-каналом работает в дифферен­циальном каскаде, транзистор VT3 является источником тока для указанного каскада, а транзистор VT4 включен в схему усилителя напряжения с общим эмиттером.

Устройство работает следующим образом. Входной сигнал подается на затвор транзистораVT1. Напряже­ние, усиленное полевым транзистором VT1, поступает на базу транзистора VT4.Выходное напряжение повто­рителя снимается с коллекторной нагрузки - резистора R10.Одновременно выходное напряжение прикладыва­ется к затвору второго транзистора дифференциальной пары VT1, VT2. Глубокая отрицательная обратная связь и большое дифференциальное сопротивление источника тока обеспечивают близкий к единице коэффициент пе­редачи повторителя. Выбором тока коллектора транзи­стора VT4 (около 4 мА) снижается нелинейность повто­рителя в области высоких частот. Температурная ста­бильность устройства обеспечивается за счет глубокой отрицательной обратной связи и введения источника то­ка на транзисторе VT3.

Основные характеристики повторителя напряжения представлены на рис. 4. Кривыми 1 -4 показана ампли­тудно-частотная характеристика устройства для различ­ных значений емкости нагрузки. С увеличением емкости от 15 до 100 пФ полоса пропускания повторителя, изме­ренная на уровне 3 дБ, сужается от 25 до 10 МГц. Указанная выше емкость нагрузки складывается из емкости кабеля и входной емкости осциллографа.

Рис. 3. Вариант схемы повторителя напряжения - щупа к осцилло­графу

Необходимо иметь в виду, что современные радио­частотные кабели с полиэтиленовой изоляцией имеют по­гонную емкость, увеличивающуюся с уменьшением вол­нового сопротивления. Так, например, типичное значение погонной емкости кабеля с волновым сопротивлением 50 Ом равно ПО…125 пФ, с волновым сопротивлением 75 Ом - в пределах 60…80 пФ. У высокоомных кабелей и кабелей с полувоздушной изоляцией погонная емкость может быть ниже, однако они сравнительно малодо­ступны

https://pandia.ru/text/79/067/images/image011_6.gif" alt="589x432, 6,8Kb - 589x432, 6,8Kb" width="589" height="432">

Активный щуп для осциллографа – простая радиолюбительская конструкция, которая может работать с любым осциллографом

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

В этой статье мы рассмотрим очень нужную в практике радиолюбителя конструкцию – активный щуп для осциллографа .

Очень многим знакома ситуация, когда подключение осциллографа к настраиваемому устройству приводит к нарушению его режимов. Виной тому в первую очередь служат вносимые в исследуемую цепь емкость и сопротивление входа осциллографа. Большинство осциллографов, используемых радиолюбителями, имеют высокое входное сопротивление – 1 МОм и емкость входа 15-20 пФ. В сочетание с соединительным экранированным кабелем длиной около метра суммарная емкость возрастает до 100 и более пФ. Для устройств работающих на частоте более 100 кГц, такая емкость может оказать существенное влияние на результаты измерений. Для устранения этого недостатка радиолюбители пользуются или не экранированным проводом или активными щупами , предлагаемый в этой статье, может работать с различными осциллографами, входное сопротивление которых может быть низким – 50 Ом или высоким – 1 МОм. Его коэффициент передачи 1 или 10. То есть он не только не ослабляет, но и усиливает сигнал. К достоинствам можно отнести и малые габариты. Таких параметров удалось добиться в результате применения быстродействующего операционного усилителя.

Верхняя рабочая частота не менее 100 МГц, входное сопротивление 15 МОм, входная емкость 1,7 пФ, входное напряжение до ± 13,5 вольт, потребляемый ток в отсутствии сигнала 6 мА. Следует особо отметить, что наличие режима усиления позволяет наблюдать на экране осциллографа с чувствительностью 10 мВ на деление входные сигналы с амплитудой 200…300 мкВ.

Большинство деталей щупа размещено на печатной плате из двухстороннего фольгированного стеклотекстолита. Соединения между сторонами монтажа выполняют проводниками через отверстия в плате. Переключатели устанавливают на корпусе щупа, а конденсатор непосредственно на SA1.

Корпус щупа состоит из пластмассового корпуса 1 (от фломастера диаметром около 18 мм) который вставлен в металлический кожух 2. Внутри корпуса размещена плата 3, на нем укреплены переключатели SA1, SA2 (4 и 5), через дно выведены соединительный и питающие провода 6. Общий провод платы соединен с кожухом, а через отверстие в нем выведен провод для металлического штыря Х1 – 7. Все внутренние соединения надо делать проводом минимальной длины, а внешние – цепи питания и сигнала – соответственно экранированным и ВЧ кабелем. Так как в микросхеме один из двух усилителей не используется его входы (выводы 5 и 6) соединены с общим проводом.

Налаживание устройства сводится к установке требуемого коэффициента усиления, который при работе щупа с осциллографом с высоким входным сопротивлением устанавливают равным 10 на частоте 10 МГц подбором резистора R1 (при замкнутом SA1). Если щуп используется с осциллографом с низкоомным входом, часть выходного сигнала гасится на согласующем резисторе R5. Поэтому в схему вводят резистор R6 и подбирают его сопротивление (при разомкнутым SA1), устанавливают коэффициент передачи равный 1. При замкнутом SA1 (режим повышенной чувствительности) установку коэффициента усиления равного 10, производят подбором резистора R1.

В устройстве применены резисторы МЛТ, С2-10, С2-33, Р1-12, конденсаторы – С1-С3 серии КМ или другие малогабаритные (К10-17, К10-47), С4 и С5 группы К52 или аналогичные. Можно использовать широкополосные ОУ AD812AR, AD817AN, AD818AN той же фирмы, которые дешевле из-за меньшей полосы частот, но их применение приведет и к сокращению рабочих частот. Для питания щупа необходим двухполярный стабилизированный источник питания с выходным напряжением ± 12…15 вольт. Потребляемый ток щупа в процессе работы может достигать 100 мА.


Самое обсуждаемое
Приготовить вкусные стейки из лосося Приготовить вкусные стейки из лосося
Сонник: к чему снится Молиться Сонник: к чему снится Молиться
Предельно допустимую погрешность определяют по формуле Предельно допустимую погрешность определяют по формуле


top