Электроотрицательность. Степень окисления и валентность химических элементов

Электроотрицательность. Степень окисления и валентность химических элементов

Электроотрицательность, как и прочие свойства атомов химических элементов, изменяется с увеличением порядкового номера элемента периодически:

График выше демонстрирует периодичность изменения электроотрицательности элементов главных подгрупп в зависимости от порядкового номера элемента.

При движении вниз по подгруппе таблицы Менделеева электроотрицательность химических элементов уменьшается, при движении вправо по периоду возрастает.

Электроотрицательность отражает неметалличность элементов: чем выше значение электроотрицательности, тем более у элемента выражены неметаллические свойства.

Степень окисления

Как рассчитать степень окисления элемента в соединении?

1) Степень окисления химических элементов в простых веществах всегда равна нулю.

2) Существуют элементы, проявляющие в сложных веществах постоянную степень окисления:

3) Существуют химические элементы, которые проявляют в подавляющем большинстве соединений постоянную степень окисления. К таким элементам относятся:

Элемент

Степень окисления практически во всех соединениях

Исключения

водород H +1 Гидриды щелочных и щелочно-земельных металлов, например:
кислород O -2 Пероксиды водорода и металлов:

Фторид кислорода —

4) Алгебраическая сумма степеней окисления всех атомов в молекуле всегда равна нулю. Алгебраическая сумма степеней окисления всех атомов в ионе равна заряду иона.

5) Высшая (максимальная) степень окисления равна номеру группы. Исключения, которые не попадают под это правило, — элементы побочной подгруппы I группы, элементы побочной подгруппы VIII группы, а также кислород и фтор.

Химические элементы, номер группы которых не совпадает с их высшей степенью окисления (обязательные к запоминанию)

6) Низшая степень окисления металлов всегда равна нулю, а низшая степень окисления неметаллов рассчитывается по формуле:

низшая степень окисления неметалла = № группы − 8

Отталкиваясь от представленных выше правил, можно установить степень окисления химического элемента в любом веществе.

Нахождение степеней окисления элементов в различных соединениях

Пример 1

Определите степени окисления всех элементов в серной кислоте.

Решение:

Запишем формулу серной кислоты:

Степень окисления водорода во всех сложных веществах +1 (кроме гидридов металлов).

Степень окисления кислорода во всех сложных веществах равна -2 (кроме пероксидов и фторида кислорода OF 2). Расставим известные степени окисления:

Обозначим степень окисления серы как x :

Молекула серной кислоты, как и молекула любого вещества, в целом электронейтральна, т.к. сумма степеней окисления всех атомов в молекуле равна нулю. Схематически это можно изобразить следующим образом:

Т.е. мы получили следующее уравнение:

Решим его:

Таким образом, степень окисления серы в серной кислоте равна +6.

Пример 2

Определите степень окисления всех элементов в дихромате аммония.

Решение:

Запишем формулу дихромата аммония:

Как и в предыдущем случае, мы можем расставить степени окисления водорода и кислорода:

Однако мы видим, что неизвестны степени окисления сразу у двух химических элементов — азота и хрома. Поэтому найти степени окисления аналогично предыдущему примеру мы не можем (одно уравнение с двумя переменными не имеет единственного решения).

Обратим внимание на то, что указанное вещество относится к классу солей и, соответственно, имеет ионное строение. Тогда справедливо можно сказать, что в состав дихромата аммония входят катионы NH 4 + (заряд данного катиона можно посмотреть в таблице растворимости). Следовательно, так как в формульной единице дихромата аммония два положительных однозарядных катиона NH 4 + , заряд дихромат-иона равен -2, поскольку вещество в целом электронейтрально. Т.е. вещество образовано катионами NH 4 + и анионами Cr 2 O 7 2- .

Мы знаем степени окисления водорода и кислорода. Зная, что сумма степеней окисления атомов всех элементов в ионе равна заряду, и обозначив степени окисления азота и хрома как x и y соответственно, мы можем записать:

Т.е. мы получаем два независимых уравнения:

Решая которые, находим x и y :

Таким образом, в дихромате аммония степени окисления азота -3, водорода +1, хрома +6, а кислорода -2.

Как определять степени окисления элементов в органических веществах можно почитать .

Валентность

Валентность атомов обозначается римскими цифрами: I, II, III и т.д.

Валентные возможности атома зависят от количества:

1) неспаренных электронов

2) неподеленных электронных пар на орбиталях валентных уровней

3) пустых электронных орбиталей валентного уровня

Валентные возможности атома водорода

Изобразим электронно-графическую формулу атома водорода:

Было сказано, что на валентные возможности могут влиять три фактора — наличие неспаренных электронов, наличие неподеленных электронных пар на внешнем уровне, а также наличие вакантных (пустых) орбиталей внешнего уровня. Мы видим на внешнем (и единственном) энергетическом уровне один неспаренный электрон. Исходя из этого, водород может точно иметь валентность, равную I. Однако на первом энергетическом уровне есть только один подуровень — s, т.е. атом водорода на внешнем уровне не имеет как неподеленных электронных пар, так и пустых орбиталей.

Таким образом, единственная валентность, которую может проявлять атом водорода, равна I.

Валентные возможности атома углерода

Рассмотрим электронное строение атома углерода. В основном состоянии электронная конфигурация его внешнего уровня выглядит следующим образом:

Т.е. в основном состоянии на внешнем энергетическом уровне невозбужденного атома углерода находится 2 неспаренных электрона. В таком состоянии он может проявлять валентность, равную II. Однако атом углерода очень легко переходит в возбужденное состояние при сообщении ему энергии, и электронная конфигурация внешнего слоя в этом случае принимает вид:

Несмотря на то что на процесс возбуждения атома углерода тратится некоторое количество энергии, траты с избытком компенсируются при образовании четырех ковалентных связей. По этой причине валентность IV намного более характерна для атома углерода. Так, например, валентность IV углерод имеет в молекулах углекислого газа, угольной кислоты и абсолютно всех органических веществ.

Помимо неспаренных электронов и неподеленных электронных пар на валентные возможности также влияет наличие вакантных () орбиталей валентного уровня. Наличие таких орбиталей на заполняемом уровне приводит к тому, что атом может выполнять роль акцептора электронной пары, т.е. образовывать дополнительные ковалентные связи по донорно-акцепторному механизму. Так, например, вопреки ожиданиям, в молекуле угарного газа CO связь не двойная, а тройная, что наглядно показано на следующей иллюстрации:

Валентные возможности атома азота

Запишем электронно-графическую формулу внешнего энергетического уровня атома азота:

Как видно из иллюстрации выше, атом азота в своем обычном состоянии имеет 3 неспаренных электрона, в связи с чем логично предположить о его способности проявлять валентность, равную III. Действительно, валентность, равная трём, наблюдается в молекулах аммиака (NH 3), азотистой кислоты (HNO 2), треххлористого азота (NCl 3) и т.д.

Выше было сказано, что валентность атома химического элемента зависит не только от количества неспаренных электронов, но также и от наличия неподеленных электронных пар. Связано это с тем, что ковалентная химическая связь может образоваться не только, когда два атома предоставляют друг другу по одному электрону, но также и тогда, когда один атом, имеющий неподеленную пару электронов — донор() предоставляет ее другому атому с вакантной () орбиталью валентного уровня (акцептору). Т.е. для атома азота возможна также валентность IV за счет дополнительной ковалентной связи, образованной по донорно-акцепторному механизму. Так, например, четыре ковалентных связи, одна из которых образована по донорно-акцепторному механизму, наблюдается при образовании катиона аммония:

Несмотря на то что одна из ковалентных связей образуется по донорно-акцепторному механизму, все связи N-H в катионе аммония абсолютно идентичны и ничем друг от друга не отличаются.

Валентность, равную V, атом азота проявлять не способен. Связано это с тем, что для атома азота невозможен переход в возбужденное состояние, при котором происходит распаривание двух электронов с переходом одного из них на свободную орбиталь, наиболее близкую по уровню энергии. Атом азота не имеет d -подуровня, а переход на 3s-орбиталь энергетически настолько затратен, что затраты энергии не покрываются образованием новых связей. Многие могут задаться вопросом, а какая же тогда валентность у азота, например, в молекулах азотной кислоты HNO 3 или оксида азота N 2 O 5 ? Как ни странно, валентность там тоже IV, что видно из нижеследующих структурных формул:

Пунктирной линией на иллюстрации изображена так называемая делокализованная π -связь. По этой причине концевые связи NO можно назвать «полуторными». Аналогичные полуторные связи имеются также в молекуле озона O 3 , бензола C 6 H 6 и т.д.

Валентные возможности фосфора

Изобразим электронно-графическую формулу внешнего энергетического уровня атома фосфора:

Как мы видим, строение внешнего слоя у атома фосфора в основном состоянии и атома азота одинаково, в связи с чем логично ожидать для атома фосфора так же, как и для атома азота, возможных валентностей, равных I, II, III и IV, что и наблюдается на практике.

Однако в отличие от азота, атом фосфора имеет на внешнем энергетическом уровне еще и d -подуровень с 5-ю вакантными орбиталями.

В связи с этим он способен переходить в возбужденное состояние, распаривая электроны 3s -орбитали:

Таким образом, недоступная для азота валентность V для атома фосфора возможна. Так, например, валентность, равную пяти, атом фосфора имеет в молекулах таких соединений, как фосфорная кислота, галогениды фосфора (V), оксид фосфора (V) и т.д.

Валентные возможности атома кислорода

Электронно-графическая формула внешнего энергетического уровня атома кислорода имеет вид:

Мы видим на 2-м уровне два неспаренных электрона, в связи с чем для кислорода возможна валентность II. Следует отметить, что данная валентность атома кислорода наблюдается практически во всех соединениях. Выше при рассмотрении валентных возможностей атома углерода мы обсудили образование молекулы угарного газа. Связь в молекуле CO тройная, следовательно, кислород там трехвалентен (кислород — донор электронной пары).

Из-за того что атом кислорода не имеет на внешнем уровне d -подуровня, распаривание электронов s и p- орбиталей невозможно, из-за чего валентные возможности атома кислорода ограничены по сравнению с другими элементами его подгруппы, например, серой.

Валентные возможности атома серы

Внешний энергетический уровень атома серы в невозбужденном состоянии:

У атома серы, как и у атома кислорода, в обычном состоянии два неспаренных электрона, поэтому мы можем сделать вывод о том, что для серы возможна валентность, равная двум. И действительно, валентность II сера имеет, например, в молекуле сероводорода H 2 S.

Как мы видим, у атома серы на внешнем уровне появляется d -подуровень с вакантными орбиталями. По этой причине атом серы способен расширять свои валентные возможности в отличие от кислорода за счет перехода в возбужденные состояния. Так, при распаривании неподеленной электронной пары 3p -подуровня атом серы приобретает электронную конфигурацию внешнего уровня следующего вида:

В таком состоянии атом серы имеет 4 неспаренных электрона, что говорит нам о возможности проявления атомами серы валентности, равной IV. Действительно, валентность IV сера имеет в молекулах SO 2 , SF 4 , SOCl 2 и т.д.

При распаривании второй неподеленной электронной пары, расположенной на 3s -подуровне, внешний энергетический уровень приобретает конфигурацию:

В таком состоянии уже становится возможным проявление валентности VI. Примером соединений с VI-валентной серой являются SO 3 , H 2 SO 4 , SO 2 Cl 2 и т.д.

Аналогично можно рассмотреть валентные возможности остальных химических элементов.

Среди химических реакций, в том числе и в природе, окислительно-восстановительные реакции являются самыми распространенными. К их числу относятся, например, фотосинтез, обмен веществ, биологические процессы, а также сжигание топлива, получение металлов и многие другие реакции. Окислительно-восстановительные реакции издавна успешно использовались человечеством в различных целях, но сама электронная теория окислительно-восстановительных процессов появилась совсем недавно – в начале XX века.

Для того чтобы перейти к современной теории окисления-восстановления, необходимо ввести несколько понятий – это валентность, степень окисления и строение электронных оболочек атомов . Изучая такие разделы, как , элементов и , мы уже сталкивались с этими понятиями. Далее, рассмотрим их подробнее.

Валентность и степень окисления

Валентность – понятие сложное, которое возникло вместе с понятием химической связи и определяется, как свойство атомов присоединять или замещать определенное число атомов другого элемента, т.е. это способность атомов образовывать химические связи в соединениях. Первоначально валентность определяли по водороду (его валентность принимали равной 1) или кислороду (валентность равна 2). Позднее стали различать положительную и отрицательную валентность. Количественно, положительная валентность характеризуется количеством отданных атомом электронов, а отрицательная валентность – числом электронов, которые необходимо присоединить атому для реализации правила октета (т.е. завершения внешнего энергетического уровня). Позднее понятие валентности, стало сочетать в себе также и природу химических связей, возникающих между атомами в их соединении.

Как правило, высшая валентность элементов соответствует номеру группы в периодической системе. Но, как и во всех правилах, есть исключения: например, медь и золото находятся в первой группе периодической системы и их валентность должна быть равна номеру группы, т.е. 1, но в действительности же высшая валентность меди равна 2, а золота – 3.

Степень окисления иногда называют окислительным числом, электрохимической валентностью или состоянием окисления и является понятием условным. Так, при вычислении степени окисления предполагается допущение, что молекулу составляют только ионы, хотя большинство соединений вовсе не являются ионными. Количественно степень окисления атомов элемента в соединении определяется числом присоединенных к атому или смещенных от атома электронов. Таким образом, при отсутствии смещения электронов степень окисления будет нулевая, при смещении электронов в сторону данного атома – отрицательная, при смещении от данного атома – положительная.

Определяя степень окисления атомов необходимо следовать следующим правилам:

  1. В молекулах простых веществ и металлов степень окисления атомов равна 0.
  2. Водород почти во всех соединениях имеет степень окисления равную +1 (и только в гидридах активных металлов равную -1).
  3. Для атомов кислорода в его соединениях типична степень окисления -2 (исключения: OF 2 и пероксиды металлов, степень окисления кислорода соответственно равна +2 и -1).
  4. Постоянную степень окисления имеют также атомы щелочных (+1) и щелочноземельных (+2) металлов, а также фтора (-1)
  5. В простых ионных соединениях, степень окисления равна по величине и знаку его электрическому заряду.
  6. Для ковалентного соединения, более электроотрицательный атом имеет степень окисления со знаком «-», а менее электроотрицательный – со знаком «+».
  7. Для комплексных соединений указывают степень окисления центрального атома.
  8. Сумма степеней окисления атомов в молекуле равна нулю.

Например, определим степень окисления Se в соединении H 2 SeO 3

Так, степень окисления водорода равна +1, кислорода -2, а сумма всех степеней окисления равна 0, составим выражение, учитывая число атомов в соединении H 2 + Se х O 3 -2:

(+1)2+х+(-2)3=0, откуда

т.е. H 2 + Se +4 O 3 -2

Зная какую величину имеет степень окисления элемента в соединении возможно предсказать его химические свойства и реакционную активность по отношению к другим соединениям, а также является ли данное соединение восстановителем или окислителем . Эти понятия в полной мере раскрываются в теории окисления-восстановления :

  • Окисление – это процесс потери электронов атомом, ионом или молекулой, что приводит к повышению степени окисления.

Al 0 -3e — = Al +3 ;

2O -2 -4e — = O 2 ;

2Cl — -2e — = Cl 2

  • Восстановление – это процесс при котором атом, ион или молекула приобретают электроны, что приводит к понижению степени окисления.

Ca +2 +2e — = Ca 0 ;

2H + +2e — =H 2

  • Окислители – соединения, принимающие электроны в ходе химической реакции, а восстановители – отдающие электроны соединения. Восстановители во время реакции окисляются, а окислители – восстанавливаются.
  • Сущность окислительно-восстановительных реакций – перемещение электронов (или смещение электронных пар) от одних веществ к другим, сопровождающихся изменением степеней окисления атомов или ионов. В таких реакциях один элемент не может окислиться без восстановления другого, т.к. передача электронов всегда вызывает и окисление и восстановление. Таким образом, общее число электронов, отнимаемое при окислении у одного элемента, совпадает с числом электронов, получаемых другим элементом при восстановлении.

Так, если элементы в соединениях находятся в своих высших степенях окисления, то они будут проявлять только окислительные свойства, в связи с тем, что отдавать электроны они уже больше не могут. Напротив, если элементы в соединениях находятся в своих низших степенях окисления, то они проявляют только восстановительные свойства, т.к. присоединять электроны они больше не могут. Атомы элементов в промежуточной степени окисления, в зависимости от условий протекания реакции, могут быть как окислителями, так и восстановителями. Приведем пример: сера в своей высшей степени окисления +6 в соединении H 2 SO 4 , может проявлять только окислительные свойства, в соединении H 2 S – сера находится в своей низшей степени окисления -2 и будет проявлять только восстановительные свойства, а в соединении H 2 SO 3 находясь в промежуточной степени окисления +4, сера может быть как окислителем, так и восстановителем.

На основании значений степеней окисления элементов можно предсказать вероятность реакции между веществами. Понятно, что если оба элемента в своих соединениях находятся в высших или низших степенях окисления, то реакция между ними невозможна. Реакция возможна, если одно из соединений может проявлять окислительные свойства, а другое – восстановительные. Например, в HI и H 2 S как йод, так и сера находятся в своих низших степенях окисления (-1 и -2) и могут быть только восстановителями, следовательно, реагировать друг с другом не будут. Зато они прекрасно будут взаимодействовать с H 2 SO 4 , для которой характерны восстановительные свойства, т.к. сера здесь находится в своей высшей степени окисления.

Важнейшие восстановители и окислители представлены в следующей таблице.

Восстановители
Нейтральные атомы Общая схема M — ne → M n +

Все металлы, а также водород и углерод.Наиболее сильные восстановители – щелочные и щелочно-земельные металлы, а также лантаноиды и актиноиды. Слабые восстановители – благородные металлы – Au, Ag, Pt, Ir, Os, Pd, Ru, Rh.В главных подгруппах периодической системы восстановительная способность нейтральных атомов, растет с увеличением порядкового номера.

отрицательно заряженные ионы неметаллов Общая схема Э + ne — → Э n-

Отрицательно заряженные ионы являются сильными восстановителями, в связи с тем, что они могут отдавать как избыточные электроны, так и свои внешние электроны. Восстановительная способность, при одинаковом заряде, растет с увеличением радиуса атома. Например, I — более сильный восстановитель, чем Br — и Cl — .Восстановителями также могут быть S 2- , Se 2- , Te 2- и другие.

положительно заряженные ионы металлов низшей степени окисления Ионы металлов низшей степени окисления могут проявлять восстановительные свойства, если для них характерны состояния с более высокой степенью окисления. Например,

Sn 2+ -2e — → Sn 4+ Cr 2+ -e — → Cr 3+ Cu + -e — → Cu 2+

Сложные ионы и молекулы, содержащие атомы в промежуточной степени окисления Сложные или комплексные ионы, а также молекулы могут проявлять восстановительные свойства, если входящие в их состав атомы, находятся в промежуточной степени окисления. Например,

SO 3 2- , NO 2 — , AsO 3 3- , 4- , SO 2 , CO, NO и другие.

Углерод, Оксид углерода (II), Железо, Цинк, Алюминий, Олово, Сернистая кислота, Сульфит и бисульфит натрия, Сульфид натрия, Тиосульфат натрия, Водород, Электрический ток
Окислители
Нейтральные атомы Общая схема Э + ne- → Э n-

Окислителями являются атомы р – элементов. Типичные неметаллы – фтор, кислород, хлор. Самые сильные окислители – галогены и кислород. В главных подгруппах 7, 6, 5 и 4 групп сверху вниз окислительная активность атомов понижается

положительно заряженные ионы металлов Все положительно заряженные ионы металлов в разной степени проявляют окислительные свойства. Из них наиболее сильные окислители – это ионы в высокой степени окисления, например, Sn 4+ , Fe 3+ , Cu 2+ . Ионы благородных металлов даже в низкой степени окисления являются сильными окислителями.
Сложные ионы и молекулы, содержащие атомы металла в состоянии высшей степени окисления Типичными окислителями являются вещества, в состав которых входят атомы металла в состоянии наивысшей степени окисления. Например, KMnO4, K2Cr2O7, K2CrO4, HAuCl4.
Сложные ионы и молекулы, содержащие атомы неметалла в состоянии положительной степени окисления В основном это кислородсодержащие кислоты, а также соответствующие им оксиды и соли. Например, SO 3 , H 2 SO 4 , HClO, HClO 3 , NaOBr и другие.

В ряду H 2 SO4 → H 2 SeO4 → H 6 TeO 6 окислительная активность возрастает от серной к теллуровой кислоте.

В ряду HClO — HClO 2 — HClO 3 — HClO 4

HBrO — HBrO 3 —

HIO — HIO 3 — HIO 4 , H5IO 6

окислительная активность увеличивается справа налево, а усиление кислотных свойств происходит слева направо.

Важнейшие восстановители в технике и лабораторной практике Кислород, Озон, Перманганат калия, Хромовая и Двухромовая кислоты, Азотная кислота, Азотистая кислота, Серная кислота (конц), Пероксид водорода, Электрический ток, Хлорноватая кислота, Диоксид марганца, Диоксид свинца, Хлорная известь, Растворы гипохлоритов калия и натрия, Гипобромид калия, Гексацианоферрат (III) калия.
Категории ,

I. Валентность (повторение)

Валентность – это способность атомов присоединять к себе определенное число других атомов.

Правила определения валентности
элементов в соединениях

1. Валентность водорода принимают за I (единицу). Тогда в соответствии с формулой воды Н 2 О к одному атому кислорода присоединено два атома водорода.

2. Кислород в своих соединениях всегда проявляет валентность II . Поэтому углерод в соединении СО 2 (углекислый газ) имеет валентность IV.

3. Высшая валентность равна номеру группы .

4. Низшая валентность равна разности между числом 8 (количество групп в таблице) и номером группы, в которой находится данный элемент, т.е. 8 - N группы .

5. У металлов, находящихся в «А» подгруппах, валентность равна номеру группы.

6. У неметаллов в основном проявляются две валентности: высшая и низшая.

Например: сера имеет высшую валентность VI и низшую (8 – 6), равную II; фосфор проявляет валентности V и III.

7. Валентность может быть постояннойили переменной.

Валентность элементов необходимо знать, чтобы составлять химические формулы соединений.

Запомните!

Особенности составления химических формул соединений.

1) Низшую валентность проявляет тот элемент, который находится в таблице Д.И.Менделеева правее и выше, а высшую валентность – элемент, расположенный левее и ниже.

Например, в соединении с кислородом сера проявляет высшую валентность VI, а кислород – низшую II. Таким образом, формула оксида серы будет SO 3.

В соединении кремния с углеродом первый проявляет высшую валентность IV, а второй – низшую IV. Значит, формула – SiC. Это карбид кремния, основа огнеупорных и абразивных материалов.

2) Атом металла стоит в формуле на первое место.

2) В формулах соединений атом неметалла, проявляющий низшую валентность, всегда стоит на втором месте, а название такого соединения оканчивается на «ид».

Например, СаО – оксид кальция, NaCl – хлорид натрия, PbS – сульфид свинца.

Теперь вы сами можете написать формулы любых соединений металлов с неметаллами.

3) Атом металла ставится в формуле на первое место.

II . Степень окисления (новый материал)

Степень окисления – это условный заряд, который получает атом в результате полной отдачи (принятия) электронов, исходя из условия, что все связи в соединении ионные.

Рассмотрим строение атомов фтора и натрия:

F +9)2)7

Na +11)2)8)1

- Что можно сказать о завершённости внешнего уровня атомов фтора и натрия?

- Какому атому легче принять, а какому легче отдать валентные электроны с целью завершения внешнего уровня?

Оба атома имеют незавершённый внешний уровень?

Атому натрия легче отдавать электроны, фтору – принять электроны до завершения внешнего уровня.

F 0 + 1ē → F -1 (нейтральный атом принимает один отрицательный электрон и приобретает степень окисления «-1», превращаясь в отрицательно заряженный ион - анион )

Na 0 – 1ē → Na +1 (нейтральный атом отдаёт один отрицательный электрон и приобретает степень окисления «+1», превращаясь в положительно заряженный ион - катион )


Как определить степень окисления атома в ПСХЭ Д.И. Менделеева?

Правила определения степени окисления атома в ПСХЭ Д.И. Менделеева:

1. Водород обычно проявляет степень окисления (СО) +1 (исключение, соединения с металлами (гидриды) – у водорода СО равна (-1) Me + n H n -1 )

2. Кислород обычно проявляет СО -2 (исключения: О +2 F 2 , H 2 O 2 -1 – перекись водорода)

3. Металлы проявляют только + n положительную СО

4. Фтор проявляет всегда СО равную -1 (F -1)

5. Для элементов главных подгрупп :

Высшая СО (+) = номеру группы N группы

Низшая СО (-) = N группы 8

Правила определения степени окисления атома в соединении:

I. Степень окисления свободных атомов и атомов в молекулах простых веществ равна нулю - Na 0 , P 4 0 , O 2 0

II. В сложном веществе алгебраическая сумма СО всех атомов с учётом их индексов равна нулю = 0 , а в сложном ионе его заряду.

Например, H +1 N +5 O 3 -2 : (+1)*1+(+5)*1+(-2)*3 = 0

2- : (+6)*1+(-2)*4 = -2

Задание 1 – определите степени окисления всех атомов в формуле серной кислоты H 2 SO 4 ?

1. Проставим известные степени окисления у водорода и кислорода, а СО серы примем за «х»

H +1 S x O 4 -2

(+1)*1+(х)*1+(-2)*4=0

Х=6 или (+6), следовательно, у серы C О +6, т.е. S +6

Задание 2 – определите степени окисления всех атомов в формуле фосфорной кислоты H 3 PO 4 ?

1. Проставим известные степени окисления у водорода и кислорода, а СО фосфора примем за «х»

H 3 +1 P x O 4 -2

2. Составим и решим уравнение, согласно правилу (II ):

(+1)*3+(х)*1+(-2)*4=0

Х=5 или (+5), следовательно, у фосфора C О +5, т.е. P +5

Задание 3 – определите степени окисления всех атомов в формуле иона аммония (NH 4) + ?

1. Проставим известную степень окисления у водорода, а СО азота примем за «х»

(N х H 4 +1) +

2. Составим и решим уравнение, согласно правилу (II ):

(х)*1+(+1)*4=+1

Х=-3, следовательно, у азота C О -3, т.е. N -3

08. Электроотрицательность, степень окисления, окисление и восстановление

Давайте обсудим смысл крайне интересных понятий, существующих в химии, и как часто бывает в науке, достаточно запутанных, и используемых в перевернутом виде. Речь пойдет об «электроотрицательности», «степени окисления» и «окислительно-восстановительные реакции».

Что это означает – понятие используется в перевернутом виде?

Постараемся постепенно рассказать об этом.

Электроотрицательность демонстрирует нам окислительно-восстановительные свойства химического элемента. Т. е. его способность забирать или отдавать свободные фотоны. А также является ли данный элемент источником или поглотителем энергии (эфира). Ян или Инь.

Степень окисления – это понятие, аналогичное понятию «электроотрицательность». Оно тоже характеризует окислительно-восстановительные свойства элемента. Но между ними есть следующая разница.

Электроотрицательность дает характеристику отдельно взятому элементу. Самому по себе, вне нахождения его в составе какого-либо химического соединения. В то время как степень окисления характеризует его окислительно-восстановительные способности именно тогда, когда элемент входит в состав какой-либо молекулы.

Давайте немного поговорим о том, что такое способность окислять, и что такое способность восстанавливать.

Окисление – это процесс передачи другому элементу свободных фотонов (электронов). Окисление – это вовсе не отнятие электронов, как это ныне считается в науке . Когда элемент окисляет другой элемент, он действует подобно кислоте или кислороду (отсюда и название «окисление»). Окислять – значит способствовать разрушению, распаду, горению элементов . Способность окислять – это способность вызывать разрушение молекул передаваемой им энергией (свободными фотонами). Помните о том, что энергия всегда разрушает вещество.

Удивительно, как долго в науке существуют противоречия в логике, никем не замечаемые.

Вот, например: «Теперь мы знаем, что окислитель – вещество, которое приобретает электроны, а восстановитель – вещество, которое их отдает» (Энциклопедия юного химика, статья «Окислительно-восстановительные реакции)».

И тут же, двумя абзацами ниже: «Самый сильный окислитель – электрический ток (поток отрицательно заряженных электронов)» (там же).

Т.е. в первой цитате говорится, что окислитель – это то, что принимает электроны, а во второй окислителем называют то, что отдает.

И подобные ошибочные, противоречащие друг другу выводы заставляют заучивать в школах и институтах!

Известно, что лучшие окислители – это неметаллы. Причем, чем меньше номер периода и больше номер группы, тем сильнее выражены свойства окислителя. Это и неудивительно. Мы разбирали причины этого в статье, посвященной анализу периодической системы, во второй части, где говорили о цвете нуклонов. От 1 группы к 8 цвет нуклонов в элементах постепенно меняется от фиолетового к красному (если учесть еще синий цвет d– и f-элементов). Сочетание желтых и красных частиц облегчает отдачу накапливаемых свободных фотонов. Желтые накапливают, но удерживают слабо. А красные способствуют отдаче. Отдавать фотоны – это и есть процесс окисления. Но когда одни красные, то нет частиц, способных накапливать фотоны. Именно поэтому элементы 8 группы, благородные газы, не окислители, в отличие от их соседей, галогенов.

Восстановление – это процесс, противоположный окислению. Ныне, в науке, считается, что когда химический элемент получает электроны, он восстанавливается. Такую точку зрения вполне можно понять (но не принять). При изучении строения химических элементов, было обнаружено, что они испускают электроны. Сделали вывод, что электроны входят в состав элементов. Значит, передача элементу электронов – это, своего рода, восстановление его утраченной структуры.

Однако на самом деле все не так.

Электроны – это свободные фотоны. Они – не нуклоны. Они не входят в состав тела элемента. Они притягиваются, поступая извне, и накапливаются на поверхности нуклонов и между ними. Но их накопление ведет вовсе не к восстановлению структуры элемента или молекулы. Напротив, эти фотоны испускаемым ими эфиром (энергией), ослабляют и разрушают связи между элементами. А это процесс окисления, но не восстановления.

Восстанавливать молекулу, в действительности, – забирать у нее энергию (в данном случае, свободные фотоны), а не сообщать. Отбирая фотоны, элемент-восстановитель уплотняет вещество – восстанавливает его.

Лучшие восстановители – металлы. Это свойство закономерно следует из их качественно-количественного состава – их Поля Притяжения наибольшие и на поверхности обязательно присутствует много или достаточно частиц синего цвета.

Можно даже вывести следующее определение металлов.

Металл – это химический элемент, в составе поверхностных слоев которого обязательно есть синие частицы.

А неметалл – это элемент, в составе поверхностных слоев которого нет или почти нет фотонов синего цвета, и обязательно есть красные.

Металлы своим сильным притяжением прекрасно отнимают электроны. И поэтому они восстановители.

Дадим определение понятий «электроотрицательность», «степень окисления», «окислительно-восстановительные реакции», которые можно встретить в учебниках по химии.

«Степень окисления – условный заряд атома в соединении, вычисленный исходя из предположения, что оно состоит только из ионов. При определении этого понятия условно полагают, что связующие (валентные) электроны переходят к более электроотрицательным атомам, а потому соединения состоят как бы из положительно и отрицательно заряженных ионов. Степень окисления может иметь нулевое, отрицательное и положительное значения, которые обычно ставятся над символом элемента сверху.

Нулевое значение степени окисления приписывается атомам элементов, находящихся в свободном состоянии…Отрицательное значение степени окисления имеют те атомы, в сторону которых смещается связующее электронное облако (электронная пара). У фтора во всех его соединениях она равна -1. Положительную степень окисления имеют атомы, отдающие валентные электроны другим атомам. Например, у щелочных и щелочноземельных металлов она соответственно равна +1 и +2. В простых ионах она равна заряду иона. В большинстве соединений степень окисления атомов водорода равна+1, но в гидридах металлов (соединениях их с водородом) и других – она равна –1. Для кислорода характерна степень окисления -2, но, к примеру, в соединении с фтором она будет +2, а в перекисных соединениях -1. …

Алгебраическая сумма степеней окисления атомов в соединении равна нулю, а в сложном ионе – заряду иона. …

Высшая степень окисления – это наибольшее положительное ее значение. Для большинства элементов она равна номеру группы в периодической системе и является важной количественной характеристикой элемента в его соединениях. Наименьшее значение степени окисления элемента, которое встречается в его соединениях, принято называть низшей степенью окисления; все остальные – промежуточными» (Энциклопедический словарь юного химика, статья «Степень окисления»).

Вот основные сведения, касающиеся данного понятия. Оно тесно связано с другим термином – «электроотрицательность».

«Электроотрицательность – это способность атома в молекуле притягивать к себе электроны, участвующие в образовании химической связи» (Энциклопедический словарь юного химика, статья «Электроотрицательность»).

«Окислительно-восстановительные реакции сопровождаются изменением степени окисления атомов, входящих в состав реагирующих веществ, в результате перемещения электронов от атома одного из реагентов (восстановителя) к атому другого. При окислительно-восстановительных реакциях одновременно происходят окисление (отдача электронов) и восстановление (присоединение электронов)» (Химический Энциклопедический Словарь под ред. И.Л. Кнунянц, статья «Окислительно-восстановительные реакции»).

На наш взгляд, в этих трех понятиях сокрыто немало ошибок.

Во-первых , мы считаем, что образование химической связи между двумя элементами – это вовсе не процесс обобществления их электронов. Химическая связь – это гравитационная связь. Электроны, якобы летающие вокруг ядра, это свободные фотоны, накапливающиеся на поверхности нуклонов в составе тела элемента и между ними. Для того, чтобы между двумя элементами возникла связь, их свободным фотонам нет нужды курсировать между элементами. Этого не происходит. В действительности, более тяжелый элемент снимает (притягивает) свободные фотоны с более легкого, и оставляет их у себя (точнее, на себе). А зона более легкого элемента, с которой были сняты эти фотоны, в той или иной мере оголяется. Из-за чего притяжение в этой зоне проявляется в большей мере. И более легкий элемент притягивается к более тяжелому. Так возникает химическая связь.

Во-вторых , современная химия видит способность элементов притягивать к себе электроны искаженно – перевернуто. Считается, что чем больше электроотрицательность элемента, тем в большей мере он способен притягивать к себе электроны. И фтор с кислородом якобы делают это лучше всего – притягивают к себе чужие электроны. А также другие элементы 6 и 7 групп.

На самом деле, данное мнение – это не более, чем заблуждение. Оно основано на ошибочном представлении, будто чем больше номер группы, тем тяжелее элементы. А также, тем больше положительный заряд ядра. Это ерунда. Ученые даже не удосуживаются до сих пор объяснить, что с их точки зрения представляет собой «заряд». Просто, как в нумерологии, пересчитали все элементы по порядку, и проставили в соответствии с номером величину заряда. Великолепный поход!

Это ясно и ребенку, что газ легче плотного металла. Как так получилось, что в химии считается, что газы лучше притягивают к себе электроны?

Плотные металлы, конечно, они, лучше притягивают электроны.

Ученые-химики, конечно, могут оставить в ходу понятие «электроотрицательность», раз уж оно столь употребительно. Однако им придется поменять его смысл на прямо противоположный.

Электроотрицательность – это способность химического элемента в молекуле притягивать к себе электроны. И, естественно, у металлов эта способность выражена лучше, чем у неметаллов.

Что же касается электрических полюсов в молекуле, то, действительно, отрицательный полюс – это элементы неметаллы, отдающие электроны, с меньшими Полями Притяжения. А положительный – это всегда элементы с более выраженными металлическими свойствами, с большими Полями Притяжения.

Улыбнемся вместе.

Электроотрицательность – это еще одна, очередная попытка описать качество химического элемента, наряду с уже существующими массой и зарядом. Как это часто бывает, ученые из другой области науки, в данном случае, химии, словно не доверяя своим коллегам физикам, а, скорее, просто потому, что любой человек, совершая открытия, идет своим собственным путем, а не просто исследуя опыт других.

Так вышло и в этот раз.

Масса и заряд никак не помогали химикам понять, что происходит в атомах при их взаимодействии друг с другом – и была введена электроотрицательность – способность элемента притягивать электроны, участвующие в образовании химической связи. Следует признать, что идея этого понятия заложена весьма верно. С той лишь поправкой, что она отражает реальность в перевернутом виде. Как мы уже говорили, лучше всего притягивают к себе электроны металлы, а не неметаллы – в силу особенностей цвета поверхностных нуклонов. Металлы – лучшие восстановители. Неметаллы – окислители. Металлы забирают, неметаллы отдают. Металлы – Инь, неметаллы – Ян.

Эзотерика приходит на помощь науке в вопросах постижения тайн Природы.

Что касается степени окисления , то это хорошая попытка понять, как происходит распределение свободных электронов в пределах химического соединения – молекулы.

Если химическое соединение однородно – т. е. оно простое, его структура состоит из элементов одного типа – тогда все верно, действительно степень окисления любого элемента в соединении равна нулю. Так как в данном соединении нет окислителей и нет восстановителей. И все элементы равны по качеству. Никто не отнимает электроны, никто не отдает. Будь это плотное вещество, или жидкость, или газ – неважно.

Степень окисления, так же, как электроотрицательность, демонстрирует качество химического элемента – только в рамках химического элемента. Степень окисления призвана сравнить качество химических элементов в соединении. На наш взгляд, идея хорошая, но ее осуществление не вполне удовлетворяет.

Мы категорически против всей теории и концепции строения химических элементов и связей между ними. Ну, хотя бы потому, что число групп, по нашим представлениям, должно быть больше 8. А значит, вся данная система рушится. Да и не только это. Вообще, пересчитывать число электронов в атомах «по пальцам» – это как-то не серьезно.

В соответствии с нынешней концепцией получается, что самым сильным окислителям присвоены самые маленькие условные заряды – фтор имеет во всех соединениях заряд -1, кислород почти везде -2. А у очень активных металлов – щелочных и щелочноземельных – эти заряды соответственно, +1 и +2. Ведь это совершенно не логично. Хотя, повторим, мы очень хорошо понимаем общую схему, в соответствии с которой это было сделано – все ради 8 групп в таблице и 8 электронов на внешнем энергетическом уровне.

Уж, как минимум, величина этих зарядов у галогенов и кислорода должна была быть наибольшей со знаком минус. А у щелочных и щелочноземельных металлов тоже большой, только со знаком плюс.

В любом химическом соединении есть элементы, отдающие электроны – окислители, неметаллы, отрицательный заряд, и элементы, отнимающие электроны – восстановители, металлы, положительный заряд. Именно таким путем сравнить элементы, соотнести их друг с другом и пытаются, определяя их степень окисления.

Однако выяснять таким способом степень окисления, на наш взгляд, не совсем точно отражает реальность. Правильнее было бы сравнивать электроотрицательность элементов в молекуле. Ведь электроотрицательность – это почти то же, что и степень окисления (характеризует качество, только отдельно взятого элемента).

Можно взять шкалу электроотрицательности и проставить ее величины в формуле для каждого элемента. И тогда сразу будет видно, какие элементы отдают электроны, а какие забирают. Тот элемент, чья электроотрицательность в соединении наибольшая – отрицательный полюс, отдает электроны. А тот, чья электроотрицательность наименьшая – положительный полюс, забирает электроны.

Если элементов, допустим, 3 или 4 в молекуле, ничего не меняется. Все также ставим величины электроотрицательности и сравниваем.

Хотя при этом следует не забыть нарисовать модель строения молекулы. Ведь в любом соединении, если оно не простое, т. е. не состоит из одного типа элементов, связаны друг с другом, в первую очередь, металлы и неметаллы. Металлы отбирают электроны у неметаллов, и связываются с ними. И у одного элемента неметалла одновременно могут отбирать электроны 2 или большее число элементов с более выраженными металлическими свойствами. Так возникает сложная, комплексная молекула. Но это не означает, что в такой молекуле элементы-металлы вступят в прочную связь и друг с другом. Возможно, они будут располагаться на противоположных сторонах друг от друга. Если же рядом – они будут притягиваться. Но прочную связь образуют только в том случае, если один элемент более металличен, чем другой. Обязательно нужно, чтобы один элемент отбирал электроны – снимал. Иначе не произойдет оголения элемента – освобождения от свободных фотонов на поверхности. Поле Притяжения не проявится вполне, и прочной связи не будет. Это сложная тема – образование химических связей, и мы не будем подробно рассказывать об этом в этой статье.

Полагаем, мы достаточно подробно осветили тему, посвященную разбору понятий «электроотрицательность», «степень окисления», «окисление» и «восстановление», и предоставили вашему вниманию немало любопытной информации.

Из книги Автобиография Йога автора Йогананда Парамаханса

Глава 23 Я получаю университетскую степень – Вы игнорируете философские определения из учебника, несомненно рассчитывая, что некая неутруждающая «интуиция» проведет вас через все экзамены. Но если вы срочно не обратитесь к более научному методу, то мне придется

Из книги Управляемые сны автора Мир Елена

Восстановление «Когда зарождается Единый признак инди-видуации, сущность и жизнь разделяются надвое. С этого момента, если не достигнут окончательный мир, сущность и жизнь никогда не увидят друг друга снова». Вильям, «Тайна золотого цветка» После институтского

Из книги Загадка Большого сфинкса автора Барбарен Жорж

Восстановление статуи Действительный возраст Большого сфинкса восходит к началу адамовой эры. По меньшей мере, он современник пирамид, ансамбль которых он, как мы увидим, завершил собой.Изображение Большого сфинкса подвергалось на протяжении истекших веков

Из книги Золотые правила фэншуй. 10 простых шагов к успеху, благополучию и долголетию автора Огудин Валентин Леонидович

Степень отрицательного влияния внешних объектов Наибольшее отрицательное влияние внешние объекты оказывают, находясь непосредственно перед входом в дом. Но чем больше они расположены под углом к входу, тем слабее становится их влияние.Объект находится непосредственно

Из книги Полная история масонства в одной книге автора Спаров Виктор

Посвящение в степень Мастера (Мистериальное действо третьего градуса) Ниже мы приводим, как и в случае с посвящением в масоны и присвоением степени Ученика, «мистериальную пьесу» третьего градуса, разыгрываемую при посвящении в степень Мастера. В.: Мастер ли ты? О.: Да,

Из книги Божественная эволюция. От Сфинкса к Христу автора Шюре Эдуард

Первая степень: Приготовление. Нагорная проповедь и Царство Божье Дело Христа начинается галилейской идиллией и объявлением о «царстве Божьем». Это предсказание указывает нам на его популярные наставления. В то же время оно является приготовлением к более возвышенным

Из книги Вампиры в России. Все, что нужно знать о них! автора Бауэр Александр

Вторая степень посвящения (очищение). Чудесные исцеления. Христианская терапия Во всех античных мистериях за нравственным и интеллектуальным приготовлением следовало очищение души, которое должно возродить в ней новые органы и придать ей впоследствии способность

Из книги Калиостро и египетское масонство автора Кузьмишин Е. Л.

Как определить степень потери крови Когда вампир пьет кровь, то выпивает за один раз от полулитра до полутора литров крови. В организме человека содержится всего пять-шесть литров крови, так что такая кровопотеря не обязательно опасна для жизни. Однако вампир может

Из книги Книга секретов. Невероятное очевидное на Земле и за ее пределами автора Вяткин Аркадий Дмитриевич

Степень Ученика Прием в степень Ученика Убранство ложи и облаченияСтены и потолок ложи должны быть завешены голубой и белой материей без позолоты. Над головой Досточтимого Мастера расположен окруженный сиянием треугольник с начертанным в его центре именем

Из книги Исцеление души. 100 медитативных техник, целительных упражнений и релаксаций автора Раджниш Бхагван Шри

Прием в степень Ученика Убранство ложи и облаченияСтены и потолок ложи должны быть завешены голубой и белой материей без позолоты. Над головой Досточтимого Мастера расположен окруженный сиянием треугольник с начертанным в его центре именем «Иегова», вышитый

Из книги Моделирование будущего во сне автора Мир Елена

Степень Сотоварища

Из книги Каббала. Высший мир. Начало пути автора Лайтман Михаэль

Степень Мастера Внутреннего Храма

Из книги автора

Мазохизм как крайняя степень добровольного вампиризма В этом смысле мазохизм похож на созависимость. Мазохисты – это люди, получающие приятные ощущения от собственных физических и психических страданий. Иными словами, им нравится, когда их бьют, ругают, издеваются над

Из книги автора

Восстановление ритма …Установите одно и то же время, чтобы ложиться спать, – если каждый вечер это одиннадцать, значит, одиннадцать.Это первое: заведите определенное время, и вскоре тело сможет войти в этот ритм. Не изменяйте это время, иначе вы собьете тело с толку. Тело

Из книги автора

Восстановление После институтского распределения, работая инженером на закрытом предприятии, я поняла, что нахожусь не на своем месте, поэтому решилась сменить профессию и поступила в джазовую школу импровизации, а позже в музыкальное училище на классическое отделение.

Из книги автора

7.5. Степень осознания зла Как разъяснялось в статье «Дарование Торы», наслаждение и блаженство определяются степенью подобия Творцу по свойствам, а страдания и нетерпение – степенью отличия от Творца. Сообразно с этим, эгоизм нам отвратителен и невыносимо тягостен,

образовывать определённое число с атомами других элементов.

    Валентность атомов фтора всегда равна I

    Li, Na, K, F, H , Rb , Cs - одновалентны;

    Be, Mg, Ca, Sr, Ba, Cd, Zn, O , Ra - обладают валентностью, равной II;

    Al, B Ga, In - трехвалентны.

    Максимальная валентность для атомов данного элемента совпадает с номером группы, в которой он находится в Периодической системе. Например, для Са это II , для серы - VI , для хлора - VII . Исключений из этого правила тоже немало:

Элемент VI группы, О, имеет валентность II (в H 3 O+ - III);
- одновалентен F(вместо
VII );
- двух- и трехвалентно обычно железо, элемент VIII группы;
- N может удержать возле себя только 4 атома, а не 5, как следует из номера группы;
- одно- и двухвалентна медь, расположенная в I группе.

    Минимальное значение валентности для элементов, у которых она переменная, определяется по формуле: № группы в ПС - 8. Так, низшая валентность серы 8 - 6 = 2, фтора и других галогенов - (8 - 7) = 1, азота и фосфора - (8 - 5)= 3 и так далее.

    В соединении сумма единиц валентности атомов одного элемента должна соответствовать суммарной валентности другого (или общее число валентностей одного химического элемента равно общему числу валентностей атомов другого химического элемента). Так, в молекуле воды Н-О-Н валентность Н равна I, таких атомов 2, значит, всего единиц валентности у водорода 2 (1×2=2). Такое же значение имеет и валентность кислорода.

    При соединении металлов с неметаллами последние проявляют низшую валентность

    В соединении, состоящем из атомов двух видов, элемент, расположенный на втором месте, обладает низшей валентностью. Так при соединении неметаллов между собой, низшую валентность проявляет тот элемент, который находится в ПСХЭ Менделеева правее и выше, а высшую соответственно левее и ниже.

    Валентность кислотного остатка совпадает с количеством атомов Н в формуле кислоты, валентность группы OH равна I.

    В соединении, образованном атомами трех элементов, тот атом, который находится в середине формулы, называют центральным. Непосредственно с ним связаны атомы О, а с кислородом образуют связи остальные атомы.

Правила определения степени окисления химических элементов.

Степень окисления - это условный заряд атомов химического элемента в соединении, вычисленный из предположения, что соединения состоят только из ионов. Степени окисления могут иметь положительное, отрицательное или нулевое значение, причём знак ставится перед числом:-1, -2, +3, в отличие от заряда иона, где знак ставится после числа.
Степени окисления металлов в соединениях всегда положительные, высшая степень окисления соответствует номеру группы периодической системы, где находится данный элемент (исключая некоторые элементы: золото Au
+3 (I группа), Cu +2 (II), из VIII группы степень окисления +8 может быть только у осмия Os и рутения Ru).
Степени неметаллов могут быть как положительными так и отрицательными, в зависимости от того с каким атомом он соединён: если с атомом металла то всегда отрицательная, если с неметаллом-то может быть и +, и -. При определении степеней окисления необходимо использовать следующие правила:

    Степень окисления любого элемента в простом веществе равна 0.

    Сумма степеней окисления всех атомов, входящих в состав частицы (молекул, ионов и т. д.) равна заряду этой частицы.

    Сумма степеней окисления всех атомов в составе нейтральной молекулы равна 0.

    Если соединение образовано двумя элементами, то у элемента с большей электроотрицательностью степень окисления меньше нуля, а у элемента с меньшей электроотрицательностью – больше нуля.

    Максимальная положительная степень окисления любого элемента равна номеру группы в периодической системе элементов, а минимальная отрицательная равна N– 8, где N – номер группы.

    Степень окисления фтора в соединениях равна -1.

    Степень окисления щелочных металлов (лития, натрия, калия, рубидия, цезия) равна +1.

    Степень окисления металлов главной подгруппы II группы периодической системы (магния, кальция, стронция, бария) равна +2.

    Степень окисления алюминия равна +3.

    Степень окисления водорода в соединениях равна +1 (исключение – соединения с металлами NaH, CaH 2 , в этих соединениях степень окисления у водорода равна -1).

    Степень окисления кислорода равна –2 (исключения – перекиси H 2 O 2 , Na 2 O 2 , BaO 2 в них степень окисления кислорода равна -1, а в соединении с фтором - +2).

    В молекулах алгебраическая сумма степеней окисления элементов с учётом числа их атомов равна 0.

Пример. Определить степени окисления в соединении K 2 Cr 2 O 7 .
У двух химических элементов калия и кислорода степени окисления постоянны и равны соответственно +1 и -2. Число степеней окисления у кислорода равна (-2)·7=(-14), у калия (+1)·2=(+2). Число положительных степеней окисления равно числу отрицательных. Следовательно (-14)+(+2)=(-12). Значит у атома хрома число положительных степеней равно 12, но атомов 2, значит на один атом приходится (+12):2=(+6), записываем степени окисленя над элементами
К + 2 Cr +6 2 O -2 7


Самое обсуждаемое
Открытое занятие по ритмике: «Танцуем, играем, всех приглашаем Конспект открытого занятия по ритмике в доу Открытое занятие по ритмике: «Танцуем, играем, всех приглашаем Конспект открытого занятия по ритмике в доу
Древнее Берендеево гадание: вот чего вам ожидать в будущем Древнее Берендеево гадание: вот чего вам ожидать в будущем
Салат с красной рыбой и помидорами рецепт Салат с красной рыбой и помидорами рецепт


top